

2019年度数理物質科学研究科 研究科修了生によるオムニバス講座

結晶エ学、スピントロニクスから生体観察へ ~半歩ずつ異分野へ~

東京工業大学 科学技術創成研究院 未来産業技術研究所 西沢 望

2003年 筑波大学数理物質科学研究科 入学 2008年 修了

Tokyo Institute of Technology Institute of Innovative Research

1. はじめに

西沢 望(にしざわ のぞみ):41歳

国立大学法人 東京工業大学 科学技術創成研究院 未来産業技術研究所 助教

2/52

1. Outline of my research

FY	
2003 2008	 筑波大学大学院 数理物質科学研究科 物性・分子工学専攻 瀧田・黒田研究室(喜多研究室) → 黒田研究室 2008年3月 工学博士号 取得 [研究内容] (Zn,Cr)Telこおける荷電不純物ドーピングによる強磁性特性の制御
2009 2010	独立行政法人 物質・材料研究機構 国際ナノアーキテクトニクス研究拠点(MANA) ポスドク研究員 [研究内容] 超伝導体/強磁性半導体 接合を用いたスピン偏極電流検出デバイスの開発
2010 2019 現在	国立大学法人 東京工業大学 像情報工学研究所 研究員 (2010-2012) 特任助教 (2013-) 未来産業技術研究所 助教 (2018-) [研究内容] • 円偏光発光デバイスの多機能化と室温動作実現 • 円偏光によるがん診断技術の構築

1. Outline of my research

- 3.【東工大】
 - 円偏光発光デバイスの多機能化と 室温動作実現
- 4.【現在】
 - 円偏光がん診断ツールの開発

2-1 強磁性半導体

6/52

2-1強磁性の制御

2-1 Cr distribution

2-1 Summary

Next step (Tsukuba \rightarrow NIMS)

10/52

【技術】

- やったことのない、汎用性の高い技術が 身につくところに行こう
- その次に行った時にいろいろできる技術
- → 微細加工技術、顕微鏡技術など

2-2 超伝導体へのスピン注入

11/52

・ 逆近接効果の実験的検出

2-2 Previous study

12/52

2-2 Sample Structure

2-2 Differential Conductance

Next step (NIMS \rightarrow TITECH)

- 【身につけた技術】
- ・ 微細加工技術(電子線・光リソグラフィ)
- スパッタによる金属製膜
- 極低温実験(希釈冷凍機)
- III-V族系の磁性半導体の成長法 (磁性半導体の本家 東エ大 宗片研にて)

【次の分野】

- 微細加工をSpintronicsで活かす
 → 電気伝導の人たちが皆やってる
- ・ 電気ではないデバイス → 光デバイス!
 (そういえば東エ大 宗片研の他のグループがやってた)

2-3.Spin-polarized light emitting diode^{16/52}

2-3. Spin-LED as a CPL source

- ③ 小型化、集積化可能な素子
- ◎ 外部磁場もしくは他の励起光源を必要とする
- ⊗ 低温でも円偏光度が低い
- ◎ 高速で円偏光の極性を切り替え、任意の円偏光度を得ることができる

2-3. Spin-LED for applications

1. Operation without applying external magnetic field

2. High polarization at room temperature

Strong externa

- \rightarrow High spin-injection efficiency
- \rightarrow Crystalline tunnel barrier

- 1. 磁場や電場などの外部 印加の必要ない素子
- 高い円偏光度で発光す る素子
- 3. 電気的に円偏光の極 性を切り替えることがで きる素子
- → 室温動作する素子

3. Helicity selectivity of CPL emission

Н

苦悩の3年間

2010年から2012年の3年余り、全く結果が出なかった

• MBEで成長したLEDがそもそも光らない

→ 長年、学生がMBEを整備、品質が劣化
 → MBEの基本的な整備から

Schottky barrierのスピン偏極率が低い

MnSb
n ⁺ -GaAs
<i>n</i> -Al _{0.1} Ga _{0.9} As
Al _{0.1} Ga _{0.9} As
GaAs
Al _{0.2} Ga _{0.8} As
<i>p</i> -Al _{0.2} Ga _{0.8} As
<i>p</i> -GaAs buf.
<i>p</i> -GaAs sub. (001)

- →トンネル伝導させる必要がある
- → AIOxトンネルバリアをMBEで作ろう

Sample Preparation

Oxide film on GaAs

21/52 N. Nishizawa *et al.*, JAP **114**, 033507 (2013). N. Yokota *et al.*, JAP **118**, 163905 (2015).

1. High density of interface state (D_{it})

2. High temperature oxidation method

→ Not available for III-V SCs

Group-V elements (As or P) have high vapor pressures

To obtain high quality oxide layer on GaAs

- 1. Reduce the density of interface state
 - \rightarrow Less dangling bonds and defects at the interface
 - \rightarrow Epitaxial growth of thin <u>aluminum layer</u> \rightarrow Small lattice mismatch with GaAs
- 2. Low temperature oxidation process
 - →Post-oxidation by exposed AI epilayer at RT

Epitaxial growth of Al Aluminum Aluminum As stabilized surface on GaAs

Decrease the dangling bonds by covered with Aluminum mono-layer Suppression of migration and replacement by not giving an extra kinetic energy to oxygen ions

Dxygen

[typical D_{it} values] AlO_x/GaAs : ~10¹³ cm⁻²V⁻¹ SiO₂/Si : ~10¹¹ cm⁻²V⁻¹

Crystalline AIO_x

22/52 N. Nishizawa *et al.*, JAP **114**, 033507 (2013). N. Yokota *et al.*, JAP **118**, 163905 (2015).

Process \rightarrow Crystalline AlO_x layer

- Al epitaxial growth (5.5Å)
 @RT with low As back-pressure Thickness of natural oxidation layer on pure Al crystal → 4~6 Å
- ii. Oxidization for 10h. (→ 7.0Å) dry air of 1 atm. @RT
- iii. Al deposition (2.3Å)
- iv. Oxidization 10h. (\rightarrow 3.0Å)

Cross-s	sectiona	l image		Fe
10		a second second	A	Ох
		n-A	I ₀₁ Ga ₀	_g As

Crystalline AIO_x

23/52 N. Nishizawa *et al.*, JAP **114**, 033507 (2013). N. Yokota *et al.*, JAP **118**, 163905 (2015).

Toward RT operation

Optical set-up

N. Nishizawa et al., PNAS 114, 1783 (2017).

25/52

EL spectra

N. Nishizawa et al., PNAS 114, 1783 (2017).

Experimental summary

N. Nishizawa *et al*., PNAS **114**, 1783 (2017).

27/52

Anti-parallel magnetization configuration at remnant state

Electrical helicity switching N.

29/52 N. Nishizawa *et al.*, APL **104**, 111102 (2014). N. Nishizawa *et al.*, APEX **11**, 053003 (2018).

Polarization blending

30/52 N. Nishizawa *et al.*, APL **104**, 111102 (2014). N. Nishizawa *et al.*, APEX **11**, 053003 (2018).

By simply tuning the currents ratio of two electrodes, value of circular polarization can be changed continuously between negative and positive helicities

 \rightarrow Arbitrary polarization emission

Next step

【次は自分独自の分野の形成へ】 デバイス拡張 or 応用?

- もっと人に知ってもらうには?
- → 既存の分野へ進むのではなく 新しい分野を作ろう

2-4. CPL applications

2-4. CPL on Biology

2-4. Spin-LEDs for Cancer diagnosis ^{34/52}

生体内における新たな癌診断技術 (非染色、非侵襲、その場観察)

博士

博士号

学科教習

修士

博士とは、研究する人 研究とは、この世の誰も見つけていないことをみつける、 もしくは、この世にないものをあらしめること

博士号とは優秀な研究成果に与えられる褒賞ではなく、 研究を遂行する能力を身につけたことを表す資格

博士課程は、専攻分野について、研究者として自立し て研究活動を行い、又はその他の高度に専門的な業 務に従事するに必要な高度の研究能力及びその基 礎となる豊かな学識を養うことを目的とする。 H01 文部科学省 大学院設置基準

35/52

博士号とは

修士号=与えられたテーマの下で研究ができる 博士号=テーマ自体を自分で探して研究を行える

日本の社会または産業の標準的な考え方は、「欧米の真似事を改良・改善していく」

日本では2000年代までは 修士号(仮免)で1人前。 素質次第で会社では研究職へ就けた。

しかし近年、外国資本の参入により 事情は一転。

修士号の研究者は軽んじられてしまう現状 が見えてきている。 (外資との合併企業では非常に肩身が狭い)

- ・ 今、日本の企業も変わりつつある
- H15 H29 ・修士の就職率: 64.5% → 78.2% 博士の就職率: 54.4% → 67.7%

博士号とは

博士号取得者に求められるカ

- 1. 未解決の問題の中から限られた期間内で解決可能な テーマを設定する力
- 2. 当然と思われていることや画期的な成果を疑ってみる 批判的思考力。
- 3. 設定したテーマをどんな手法、プロセスで探究し、 解決に導くかを自ら計画・実践するプロジェクトマネジメント能力。
- 4. 研究成果を論文にまとめるための論理的思考力。
- 5. 研究成果を学会という世界の専門家の集まる場で発表する プレゼンテーション能力。
- 6. 学会でのフィードバックを受けて、より高度な研究へと発展させていく、コミュニケーションカ。
- 7. 専門という軸足をつくることにより、判断や振り返りなどが効率 的にできるようになる力

自分の専門

軸足を中心に踏み込む

ご清聴ありがとうございました